Cooperative Edge Caching: A Multi-Agent Deep Learning Based Approach
نویسندگان
چکیده
منابع مشابه
Agent-based approach for cooperative scheduling
This paper studies the multi-factory production (MFP) network scheduling problem where a number of different individual factories join together to form a MFP network, in which these factories can operate more economically than operating individually. However, in such network which known as virtual production network with self-interested factories with transportation times, each individual facto...
متن کاملCooperative Multi-agent Control Using Deep Reinforcement Learning
This work considers the problem of learning cooperative policies in complex, partially observable domains without explicit communication. We extend three classes of single-agent deep reinforcement learning algorithms based on policy gradient, temporal-difference error, and actor-critic methods to cooperative multi-agent systems. We introduce a set of cooperative control tasks that includes task...
متن کاملA multi-agent based cooperative approach to scheduling and routing
In this paper, we propose a general agent-based distributed framework where each agent is implementing a different metaheuristic/local search combination. Moreover, an agent continuously adapts itself during the search process using a direct cooperation protocol based on reinforcement learning and pattern matching. Good patterns that make up improving solutions are identified and shared by the ...
متن کاملAn experimental approach to cooperative learning of multi-agent systems
We have built a multiple autonomous-robots simulator in order to study cooperative learning ’of multiagent systems. By using the simulator, experiments can be done for any tasks by any learning methods with some conditions. The simulator makes it possible to approach empirically to cooperative learning. ’Learning of multiagent systems’ has not been founded yet as a field of study. Certain point...
متن کاملMulti-Agent Deep Reinforcement Learning
This work introduces a novel approach for solving reinforcement learning problems in multi-agent settings. We propose a state reformulation of multi-agent problems in R that allows the system state to be represented in an image-like fashion. We then apply deep reinforcement learning techniques with a convolution neural network as the Q-value function approximator to learn distributed multi-agen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3010329